US011556247B2

a2 United States Patent

Karame et al.

US 11,556,247 B2
*Jan, 17, 2023

(10) Patent No.:
45) Date of Patent:

(54) SECURE AND TRANSPARENT PRUNING
FOR BLOCKCHAINS

(58) Field of Classification Search
CPC .. GO6F 16/1824; GOGF 3/0608; GO6F 3/0641;
GOG6F 3/0652; GO6F 3/067,

(71) Applicant: NEC Corporation, Tokyo (JP) (Continued)
(72) Inventors: Ghassan Karame, Heidelberg (DE); (56) References Cited
Alessandro Sforzin, Heldelberg (DE) U.S. PATENT DOCUMENTS
(73) Assignee: NEC CORPORATION, Tokyo (JP) 2016/0330034 Al 11/2016 Back et al.
2017/0337534 Al 112017 Goeringer et al.
*) Notice: Subject to any disclaimer, the term of this i
] Ly (Continued)
patent is extended or adjusted under 35
US.C. 154(b) by 0 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis- o)
claimer. Nakamoto, Satoshi “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem”, ResearchGate, Germany, Mar. 2009, pp. 1-9.
(21) Appl. No.: 17/242,354 (Continued)
. Primary Examiner — Dinku W Gebresenbet
22) Filed: Apr. 28, 2021 . .
(22) File pr- 2%, (74) Attorney, Agent, or Firm — Leydig, Voit & Mayer,
(65) Prior Publication Data Lid.
US 2021/0247908 A1 Aug, 12, 2021 7 ABSTRACT
A method for enabling pruning of a blockchain of a block-
chain network includes creating an active blocks commit-
Related U.S. Application Data ments Merkle tree from hashes of active blocks and creating
)) o an active smart contracts commitments Merkle tree from
(63) Continuation of application No. 16/245,268, filed on hashes of active smart contracts. The Merkle trees are
Jan. 11, 2019, now Pat. No. 11,036,395. created after an amount of blocks created in the blockchain
(Continued) has reached a threshold set by a pruning threshold parameter
stored in the blockchain network. Hashes of the roots of the
(51) Inmt. CL Merkle trees are stored in a header of a new block as a new
GO6F 16/00 (2019.01) genesis block. The new genesis block is broadcast to the
GO6F 3/06 (2006.01) blockchain network. A set of the active blocks and active
(Continued) smart contracts used respectively to create the active blocks
(52) U.S.CL commitments Merkle tree and the active smart contracts
CPC ... GOG6F 3/0608 (2013.01); GO6F 3/067 commitments Merkle tree are committed to upon the block-
(2013.01); GO6F 3/0641 (2013.01); chain network reaching consensus on the new genesis block.
(Continued) 20 Claims, 3 Drawing Sheets
4 Bytes 32 Bytes 32 Bytes
: Prev. Block | Txs Merkle
4 Bytes Pr:\z, Bétle;Ck TX?’SZ;Y::(]e 4 Bytes 4 Bytes 4 Bytes Vers:on Header Hash| Root Hash
Version | eader Hash| Root Hash| Timestamp | nBits | nonce cBlk o+ [Timestamp | nBits|nonce
32 Bytes 32 Bytes 4 Bytes 4 Bytes 4 Bytes

US 11,556,247 B2

Page 2
Related U.S. Application Data 2018/0285217 Al* 10/2018 Smithccceeveenne GOGF 21/00
. L. 2018/0331832 Al* 11/2018 Pulsifer G06Q 20/3825
(60) Provisional application No. 62/747,145, filed on Oct. 2019/0044734 Al 2/2019 Lancashire et al.
18, 2018. 2019/0354723 Al* 11/2019 Dassenno GOG6F 21/645
(1) Int. CI. OTHER PUBLICATIONS
HO4L 9/32 (2006.01)
HO4L 9/06 (2006.01) Casey, Bitcoin Core version 0.11.0 release notes, Aug. 5, 2015, pp.
GO6Q 20/38 (2012.01) 1-10, GitHub, online.
GO6F 16/182 (2019.01) Krzysiekj, Bitcoin Core version 0.12.0 release notes, Jul. 8, 2016,
HO04L 9/00 (2022.01) pp. 1-16, GitHub, online.
(52) U.S. CL Eldentyrell et al. “Thin Client Security”, Bitcoin Wiki, online, May
CPC ... GOG6F 3/0652 (2013.01); GOGF 16/1824 22, 2018, pp. 1-5.

(2019.01); GO6Q 20/382 (2013.01); HO4L
9/0643 (2013.01); HO4L 9/3236 (2013.01);
HO4L 9/50 (2022.05)
(58) Field of Classification Search

CPC .. GO6F 16/137; GO6F 16/1834; GO6F 16/184;
GOG6F 11/3648; GO6Q 20/382; GO6Q
20/02; GO6Q 2220/00; HO4L 2209/38;
HO4L 9/0643; HO4L 9/3236; HO4L 63/12;
HO04L 9/3239; HO4L 9/50

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0152289 Al
2018/0189312 Al

5/2018 Hunt et al.
7/2018 Alas et al.

Heilman, Ethan et al., “Eclipse Attacks on Bitcoin’s Peer-to-Peer
Network”, Proceedings of the 24" USENIX Security Symposium,
Aug. 12-14, 2015, pp. 1-17, Washington D.C., USA.

Sgornick et al. “Data Security”, Bitcoin Wiki, online, Nov. 19, 2017,
pp. 1-5.

Eromenko, Alexey, Masterblocks: Scaling Blockchain by summa-
rizing balances for Dash and Bitcoin Cash [Research Paper Draft],
Feb. 7, 2018 (Feb. 7, 2018), XP055608788, pp. 1-7, Google Docs,
online.

Nicoll, Ross, “Blockchain regenesis. Issue #1185. Dogecoin/
dogecoin. Github”, Jun. 25, 2015 (Jun. 25, 2015), XP055608803,
pp. 1-2, GitHub, online.

U.S. Appl. No. 16/245,268, filed Jan. 11, 2019.

Gopie, “What are Smart Contracts on Blockchain?—Blockchain
Pulse: IBM Blockchain Blog,” International Business Machine
Corporation (IBM), pp. 1-10, Jul. 2, 2018, IBM, Armonk, NY, USA.

* cited by examiner

US 11,556,247 B2

Sheet 1 of 3

Jan. 17,2023

U.S. Patent

solkd ¥ S9IAg ¥ sa1Ag solAd ¢ S9IAd ¢€
22ouou|siyigu | dweisawi| H_E”#ou u._cw_r_mou
yseH 100y |yseH JopesH
P3N SX1 | Xo0|g *Ad4d UOISI9A
s9)Ag z€ s9)Ag C€ salAg {
yseH 100y |yseH JopeaH
9JuUouU | sjigu |dwejsawil | SPLBIN SX1 | porg Aadg | UOISIOA
solAg solAg ¢ solAg soiAg ¢¢ soiAg ¢¢ solAg

() L Ol

(e) L ©OId

US 11,556,247 B2

Sheet 2 of 3

Jan. 17,2023

U.S. Patent

¢ Old

A
mv___m E__m_ mv___m_ Nv___m_ U___m_
(ne)H| |[(pradH]| [(eng)H| [(eng)H] |[(T118)H
| GH PH N\ EH TH N\ 7 xTH
(SHISH)H (PHIEH)H (ZHITHH
GSH _ PEH / \ ¢TH
(SSHISSH)H (PEHIZTHIH |+
GGSSSH / \ PECTH

(SSSSHIYEZTHIH

1004 oPHAN

/

0l

vl

U.S. Patent Jan. 17, 2023 Sheet 3 of 3 US 11,556,247 B2

Transactions

v

FIG. 3

OIOMO
-
24

20 —

Pruning
Threshold 26 New Blocks
Parameter Counter

Blockchain network

*

S1 Sé

Counter 26 reaches or passes Counter reset

A

threshold for new blocks set by

pruning threshold parameter 24

2 S5

A node 22 creates active blocks Consensus

and smart contracts reached?

commitments Merkle trees

yes |
S3 S7

The node 22 makes a new block for Nodes 22 prune the blockchain in

transactions as a new genesis block and stores local disk 28 and commit to set of

the created Merkle trees in the new block’s active blocks and smart contracts

body and hashes of the roots of the created
v

S8
Nodes 22 append new blocks to

Merkle trees in the new block’s header

S4
the new genesis block

The node 22 broadcasts new genesis block to

other nodes 22 in the blockchain network 20

for consensus to be reached

US 11,556,247 B2

1
SECURE AND TRANSPARENT PRUNING
FOR BLOCKCHAINS

CROSS-REFERENCE TO PRIOR
APPLICATIONS

Priority is claimed to U.S. application Ser. No. 16/245,
268 filed on Jan. 11, 2019, which claims priority to U.S.
Provisional Application No. 62/747,145 filed on Oct. 18,
2018, the entire contents of each of these applications is
hereby incorporated by reference herein.

FIELD

The present invention relates to blockchains and block-
chain networks and, in particular, to pruning of blockchains
in blockchain networks.

BACKGROUND

Nowadays, one of the biggest deterrents to a widespread
use of the blockchain is the sheer amount of disk space
needed to maintain a blockchain node. Currently, the Bitcoin
blockchain needs about 200 GB of space to store its blocks
and transactions. On the one hand, all this available histori-
cal data helps with issues of transparency and double-
spending; on the other hand, it makes it unfeasible for less
powerful devices to take part in the blockchain consensus.

Since version 0.11.0, discussed in the Bitcoin Core ver-
sion 0.11.0 Release Notes, the Bitcoin client has introduced
the possibility to prune the blockchain. Pruning allows the
Bitcoin client to delete raw blocks and undo data once it’s
been validated and used to build the databases needed for a
node to follow the protocol. The pruning is done locally, so
each node can choose how many blocks it wants to prune
(but each node must keep at least two days’ worth of blocks
to keep running correctly).

However, taking advantage of pruning disables some
functionalities of the Bitcoin client, such as block relaying
and the ability to maintain a full transaction index. A later
version 0.12.0 of the Bitcoin client discussed in the Bitcoin
Core version 0.12.0 Release Notes introduced the possibility
of relaying only new blocks, that is, blocks that extend the
client’s active chain.

The use of light clients has been proposed since the
introduction of Bitcoin in Nakamoto, Satoshi, “Bitcoin: A
peer-to-peer electronic cash system,” (2008). Light clients
connect to regular blockchain nodes, and request from them
only the blockchain blocks’ headers and only those trans-
actions that are of interest to the light client itself, that is,
those in which it is either a sender or a receiver. With this
approach, with a block header being 80 bytes and with a rate
of 1 block every 10 minutes, the size of the blockchain
increases about 4.2 MB per year. This is a much more viable
solution for resource-constrained devices than downloading
the entire blockchain data.

However, the solutions for light clients have drawbacks.
First of all, the light clients cannot validate the transactions
themselves, because they do not store the blockchain’s
transaction history needed to check for double-spending.
The only method the light clients have for asserting the
validity of a transaction is the “X blocks deep” method. This
method takes X to be the number of blocks added after the
one containing the given transaction, then the light client
essentially has to trust that the given transaction, X blocks
deep, would have been too costly to forge for an attacker.

10

15

20

25

30

35

40

45

50

55

60

65

2

In comparison, full nodes, also referred to as thick clients,
can validate transactions by checking the whole blockchain
up to that point. The full nodes use the “X blocks deep”
method as well, but for a different purpose: to decide how
likely it is that a longer fork in the blockchain will emerge
which excludes that transaction.

Last but not least, light clients have to trust the node(s) to
which they connect and request the blockchain data. Since
the light clients do not store the entire blockchain, they lack
the means to verity the honesty of the node(s) to which they
are connecting to. The light clients could only obtain some
guarantees by connecting to multiple nodes, downloading
data from each of them, and looking for suspicious differ-
ences between the obtained data. Even so, as shown in
Heilman, Ethan, et al., “Eclipse Attacks on Bitcoin’s Peer-
to-Peer Network,” USENIX Security Symposium (2015),
the light clients have been found vulnerable to Eclipse
attacks, which are attacks in which a malicious blockchain
node is able to completely isolate another node from the
blockchain and feed it false blockchain data.

SUMMARY

In an embodiment, the present invention provides a
method for pruning a blockchain of a blockchain network.
The method includes creating an active blocks commitments
Merkle tree from hashes of active blocks and creating an
active smart contracts commitments Merkle tree from
hashes of active smart contracts. The Merkle trees are
created after an amount of blocks created in the blockchain
has reached a threshold set by a pruning threshold parameter
stored in the blockchain network. Hashes of the roots of the
Merkle trees are stored in a header of a new block as a new
genesis block. The new genesis block is broadcast to the
blockchain network so that the blockchain network can
reach consensus on the new genesis block. A set of the active
blocks and active smart contracts used respectively to create
the active blocks commitments Merkle tree and the active
smart contracts commitments Merkle tree are committed to
upon the blockchain network reaching consensus on the new
genesis block.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in even greater
detail below based on the exemplary figures. The invention
is not limited to the exemplary embodiments. All features
described and/or illustrated herein can be used alone or
combined in different combinations in embodiments of the
invention. The features and advantages of various embodi-
ments of the present invention will become apparent by
reading the following detailed description with reference to
the attached drawings which illustrate the following:

FIG. 1(a) is an example of a block header before intro-
ducing root hashes of active blocks and active smart con-
tracts commitments Merkle trees;

FIG. 1(b) is an example of a block header before intro-
ducing root hashes of active blocks and active smart con-
tracts commitments Merkle trees;

FIG. 2 is an example of a Merkle tree created for five
blocks; and

FIG. 3 is a schematic overview of the method for pruning
of a blockchain in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

An embodiment of the present invention provides a
method that improves blockchain pruning functionalities. As

US 11,556,247 B2

3

used herein, “pruning” does not require that any part of the
blockchain be deleted. Rather, according to a preferred
embodiment, the blocks located prior to a pruning point are
not deleted, but rather compressed to advantageously main-
tain a full copy of the blockchain, but reduce its memory
requirements. This method can be especially advantageously
applied according to an embodiment for improving the
Bitcoin blockchain. It allows to efficiently prune the block-
chain by creating a block that will become a new genesis
block, and whose ancestor blocks will be compressed. The
pruning will force nodes to commit to the current unspent
transaction output (UTXO) or active blocks set, that is, to
consider it as the “truth.” The active blocks are the blocks
that have at least one transaction with one UTXO. By having
all nodes in the network prune from the same block, the old
blocks and transactions can be discarded because they are
considered universally valid and are not needed anymore to
validate new transactions.

A blockchain network is typically composed nodes which
are computer devices in the blockchain network that can
assume the role of either regular clients or miners. Clients
send and receive transactions, and contribute to the block-
chain by relaying to their neighbors every transaction and
block that they receive. Miners are clients than can validate
transactions and aggregate them into blocks and broadcast
them into the blockchain network so that every node can
update its local copy of the blockchain stored in a memory
device.

Regardless of the role covered, each network node has to
store a local copy of the entire blockchain in order to
validate new transactions and blocks, and detect double-
spending. The redundancy also helps against denial of
service attacks.

According to an embodiment, the present invention pro-
vides a method to prune the blockchain at regular intervals.
An adjustable counter keeps track of how many blocks were
created since the last pruning event and, when a previously
set threshold is surpassed, indicates when to prune the
blockchain. The value of the counter also represents how
many blocks to keep after each pruning cycle.

The pruning process starts after a miner successfully
generates the following: (i) an active blocks commitment
Merkle tree, (ii) an active smart contracts Merkle tree, and
(iii) a new block as usual. This new block is a regular block
with the addition of the active blocks commitment Merkle
tree and the active smart contracts commitment Merkle tree.
Additionally, the header of the new block includes the root
hashes of each of those two Merkle trees. The new block is
then sent into the network, where it will be spread via a
gossip protocol.

Once the network accepts the new block as the genesis
block, that is, miners start building the blockchain on top of
it, all nodes can prune their local copy of the blockchain by
either compressing the blocks with a modern compression
algorithm, or by applying a block-based or Rabin-based
deduplication algorithm. Another viable strategy would be
moving the pruned blocks to slower, but less expensive,
storage facilities such as cloud storage or external universal
serial bus (USB) drives. While it could also be deleted, this
would result in the history not being retrievable.

By creating a new common starting point at the new
genesis block, and committing to the current active blocks
set, the network agrees that all transactions before the
pruning point are to be considered valid and unalterable.
Advantageously, this emulates a hard checkpoint that cannot
later be forked. Therefore, the transactions before the prun-

20

40

45

4

ing point are not needed anymore for the validation of past
transactions and can be pruned to save disk space.

If the need arises to retrieve an older transaction belong-
ing to a set of already pruned blocks, it could be retrieved by
uncompressing the relevant block.

Every node in a blockchain is a client, with some of them
additionally assuming the role of miners. Functions attrib-
uted to regular clients include:

Full read access to the blockchain’s ledger.

Sending and receiving transactions.

Relaying transactions and blocks to neighboring nodes as

part of the gossip protocol.

Additionally, ordinary clients store a local copy of the
entire blockchain which, as mention above, typically
amounts to hundreds of gigabytes of disk space.

Miners are clients that carry out additional tasks directed
at extending and maintaining the blockchain. Miners also
need to store a local copy of the entire blockchain. Their set
of functionalities includes those of regular clients, with the
following additions:

1) Validation of transactions.

2) Validation of blocks.

3) Creation of new blocks by grouping a number of trans-
actions.

The process of creating a new block requires the miner to
solve a Proof-of-Work (PoW) which is a very hard compu-
tational puzzle. Block creation is designed to be a compu-
tational-resource-demanding operation to prevent malicious
network peers from attempting to modify past blocks. In
practice, the cost of moditying a block increases with every
new block added to the blockchain.

Light clients are an option for those unwilling to either
invest in a powerful machine to assume a miner role or store
the entire blockchain on disk. As stated above, light clients
are only interested in storing a subset of the blockchain’s
data. In particular, the light clients request only transactions
that interest them directly. This allows them to join the
network without the burden of storing hundreds of gigabytes
of data.

As previously mentioned, blockchain nodes have to store
a significant amount of data. For example, Bitcoin block-
chain nodes create a folder which stores all related files.
Embodiments of the present invention focus on the files
storing blocks and transaction data. These files are the cause
of the blockchain’s high disk size requirements. Embodi-
ments of the present invention apply the pruning to these
files.

Using Merkle tree commitments according to embodi-
ments of the present invention advantageously speeds up the
transaction validation process. In particular, according to
embodiments of the present invention, the active blocks and
smart contracts are in respective Merkle trees whose root
hashes are added to the block header of the new genesis
block. This allows for pruning of blocks which, in turn,
saves disk space and allows the nodes to validate the
transactions faster by having less overall transaction data to
consider.

FIG. 1(a) shows a block header before introducing the
Merkle Tree commitments. FIG. 1(5) shows a block header
after introducing the Merkle tree commitments. Blk commit
is the root hash of the active blocks commitment Merkle tree
and SC commit is the root hash of the smart contracts
commitment Merkle tree.

Merkle trees are binary trees of hashes. The tree is built
by pairing and hashing its leaves, and then hashing the
results until a single hash remains: the tree’s root. If there are
an odd number of leaves, then the leaf without an assigned

US 11,556,247 B2

5
companion is hashed with a copy of itself. The root value is
what will be added to the blocks’ headers.

FIG. 2 shows an example of how a s Merkle tree 10
comprising five blocks 12 indicated as Blkl, Blk2, BIk3,
Blk4 and BIk5 each containing transaction data would be
built. The tree’s leaves 14 are hashes of the blocks 12
indicated in FIG. 12 by the letter H followed by the blocks
which are hashed (e.g., H1 is the hash of block 1, H12 is the
combination of the hashes of blocks 1 and 2, H1234 is the
combination of the hashes of blocks 1-4, H55 is the com-
bination of the hash of block 5 with itself, and so on). The
hashes of the leaves 14 are then paired and hashed toward
the root 16 of the Merkle tree 10 until the root 16 remains.
In the example of FIG. 2, the block 12 indicated as BIK5 is
hashed with a copy of itself since it does not have a
companion.

One main benefit of Merkle trees is that transaction
validation would now require only log(N), where N is the
amount of leaves 14 of the Merkle Tree 10. Commitments
simplify the attestation of the validity of any leaf 14 in the
Merkle tree with a Merkle proof, thus proving that a selected
block containing transaction data is indeed valid. Specifi-
cally, to validate a transaction, only the Merkle root 16 and
a list of the intermediate hashes are needed. For example, to
validate a transaction in the block 12 indicated as BIk3 of
FIG. 2, anode only needs a copy of the H4, H34, and H1234
hashes in addition to the Merkle root 16.

Light clients can also benefit from blocks commitments,
because it would allow them to immediately synchronize
with the blockchain with just a Merkle root hash (the active
blocks commitment Merkle tree root hash).

Embodiments of the present invention leverage a combi-
nation of Merkle tree commitments and pruning to mitigate
the impact of the blockchain’s size on disk, thereby freeing
up disk space and computational resources, and providing
for faster computation by the blockchain nodes in validating
transactions.

First, according to an embodiment of the present inven-
tion, a new network-wide parameter is introduced and
referred to herein as “a pruning threshold” with a double
meaning:

1) The amount of blocks to keep after pruning the local copy
of the blockchain.

2) The minimum amount of blocks between two consecutive
pruning events.

The pruning threshold can therefore be a single parameter
or both. The pruning parameter can be applied in a manner
similar to the difficulty parameter in modern blockchains
such as Bitcoin and Ethereum, and will be integrated in the
core algorithm so that every node is aware of its value. The
initial value can be adjusted according to a desired target
maximum size of the blockchain on disk.

A separate counter keeps track of the number of blocks
created from the previous pruning event. Once it becomes
greater or equal then the pruning threshold, a new pruning
event starts. The counter is reset after each pruning cycle.

Since the pruning threshold value is known to all nodes,
once the number of blocks created passes the threshold, as
determined by the counter, the miners know that the next
block that they create could be a new genesis block. The new
genesis block resembles a regular block with two additions:
1) The body of the new genesis block contains the active
blocks commitment Merkle tree and the active smart con-
tracts commitment Merkle tree. This is achieved by the
miner storing the hashes of the headers of the current set of
active blocks and hashes of the code of the current set of
active smart contracts in respective Merkle trees and adding

25

35

40

45

50

55

6

the Merkle trees in the body of the new genesis block,
together with the hashes of the transactions in the usual
Merkle tree for the transactions normally present in all
blocks. The active smart contracts are the smart contracts
which have been recently invoked. These smart contracts are
stored in the bodies of invoked transactions. This provides a
commitment over all contracts to allow for the pruning of the
blockchain.

2) The header of the new genesis block contains the hashes
of'the roots of the active blocks commitment Merkle tree and
the active smart contracts commitment Merkle tree root hash
(see Blk commit and SC commit, respectively, in FIG. 1(5)).

The first miner that is able to solve the PoW computa-
tional puzzle then broadcasts the new genesis block into the
network, where it is spread, e.g., by the gossip protocol.

At this stage, there are two possible outcomes:

1) The network “rejects” the new genesis block by the nodes
not reaching consensus on the new genesis block. This will
occur where the other nodes have a different value for any
of the hashes of the Merkle trees. In this case, the other
miners do not build on top of the new genesis block, that is,
they do not append their newly generated blocks after it.
Since this signals that they do not agree with pruning the
blockchain at this point in time, they will keep building the
old unpruned blockchain until the counter reaches the prun-
ing threshold again.

2) The network “accepts” the new genesis block by the
nodes reaching consensus on the new genesis block, or in
other words having the same values for the hashes of the
Merkle trees. In this case, the other miners will build on top
of the new genesis block, that is, they will append their
newly generated blocks after it. This signals that they agree
with pruning the blockchain at this point in time, and will
therefore prune their local copy accordingly.

Ifthe new genesis block is accepted, non-miner nodes will
switch to the new blockchain, and will in turn prune their
local copy.

Thus, if the new genesis block is accepted, then all nodes
are able to safely prune their local copy of the blockchain.
The pruning procedure works as follows:

1) The pruning threshold parameter defines how many
blocks to keep in the local copy after pruning.

2) Each node can make a decision about how to act on its
blockchain local copy. They can compress the data of the
blocks which can be pruned according to the pruning
threshold parameter using a modern compression algorithm,
such as GZIP, or apply deduplication techniques such as
block-based or Rabin-based deduplication. In both cases,
pruning affects the files on disk that store data about the
blockchain’s blocks. Nodes can also decide not to prune the
blockchain at all, thus keeping their blockchain local copy
intact. It is possible, according to an embodiment, to enforce
pruning on the nodes.

3) If a node decides to prune its blockchain local copy then,
regardless of the processing method of choice, it will apply
the pruning up to the block defined by the pruning threshold.

By pruning the blockchain and committing to the current
set of active blocks and smart contracts, the nodes are fully
accepting everything that happened before the pruning point
as an unchangeable truth. Specifically, the nodes acknowl-
edge that it would be too computationally costly for an
attacker to attempt to change that history, and therefore the
blocks not required to be saved by the pruning threshold
parameter can be pruned to save disk space.

US 11,556,247 B2

7

Embodiments of the present invention provide for the
following improvements and advantages:

1) Combining network consensus and blockchain pruning to
allow to save disk space. In particular, nodes can reach
consensus over accepting or rejecting pruning at different
points in time. When consensus is reached over accepting
the pruning, the nodes start building the blockchain on the
newly broadcasted genesis block. This emulates a network-
wide parameter to give all nodes an indication on when to
start the blockchain pruning process.

2) Achieving pruning by deduplicating or compressing
blockchain contents, or by moving the contents to slower,
but less expensive memory devices.

3) Enforcing the pruning of the blockchain on a network-
wide scale at the same point, in contrast to allowing each
node to prune their local blockchain copy independently at
different points.

4) Making the blockchain pruning process uniform. All
nodes will prune their blockchain local copy for the same
amount of data, in contrast with the current method of
allowing each node to choose how much to prune their local
blockchain copy, possibly creating inconsistencies.

5) Faster transactions and blocks look-up as the pruning
process decreases the amount of data to search through.

According to an embodiment of the present invention, a
method for performing secure and transparent pruning of a
blockchain comprises the steps of:

1) It is determined that the number of blocks created
becomes greater than or equal to the pruning threshold
parameter indicating the network’s threshold for pruning.
2) Miners create the active blocks and active smart contracts
commitments Merkle trees and store the hashes of their roots
in the new genesis block that they create. A miner is able to
create the new genesis block before the other miners and
broadcasts it into the network.

3) The network reaches consensus over the new block:
miners can either accept the pruning and keep building the
blockchain on top of the new genesis block, or ignore it and
keep building the old unpruned blockchain.

4) If miners ignore the new genesis block, then the process
will restart at step 1) at the next cycle.

5) If the new genesis block is accepted, one or more nodes
in the network prunes its local copy of the blockchain and
commits to the current sets of active blocks and smart
contracts. Nodes can decide not to prune their local copy of
the blockchain, but they have to switch to the new genesis
block once it is accepted. The new genesis block replaces the
old genesis block and the nodes use the new blockchain with
the new genesis block.

6) Miners keep building the blockchain by appending blocks
on top of the newly created genesis block.

While pruning can be done locally and without synchro-
nization, the network would risk losing content without
consensus in this case.

FIG. 3 schematically illustrates transactions coming into
the blockchain network 20, in which the nodes 22 are
located and are able to communicate with each other, for
example using the gossip protocol, to share information and
reach consensus on new blocks. Each of the nodes 22 is a
computer device for performing functions in the blockchain
with its own local copy of the blockchain. Nodes 22 who are
miner nodes are able to validate the transactions coming into
the blockchain network 20 and create new blocks which are
added to the blockchain. Specifically, the miner nodes create
new blocks from the transaction data and broadcast the new
blocks to the other nodes 22 in the blockchain network for
reaching consensus on the new blocks. If consensus is

10

20

25

30

35

40

45

55

8

reached, the transactions are considered valid and the new
blocks are appended to the blockchain. Embodiments of the
present invention implement the pruning threshold param-
eter 24 and a counter 24 for the number of blocks being
added to the blockchain within the blockchain network 20.

According to a first step S1, the counter 24 reaches a
threshold set by the pruning threshold parameter 26 which is
implemented in the blockchain network 20 such that the
nodes 22 are each aware when the threshold has been
reached. At this point, or thereafter, in a second step S2 one
of the nodes 22 who is a miner node creates Merkle trees
using hashes of the current set of active blocks and current
set of active smart contracts, respectively. In a third step S3,
the node 22 which created the Merkle trees creates a new
block for transactions, as it would ordinarily do. However,
this new block is created as a new genesis block and differs
from an ordinary block as the node 22 in that the node 22
adds the root hashes of the Merkle tree to its header and also
preferably stores the created Merkle trees together with the
ordinary Merkle tree for transactions in its body. After
creating the new genesis block, the node 22 broadcasts it
into the blockchain network in a fourth step S4 so that
consensus can be reached on it in a fifth step S5. Regardless
of whether consensus is reached, the counter will be reset in
a sixth step S6, which could also be performed at other
times, such as upon reaching the threshold. If consensus is
not reached in step S5, then the new genesis block is not
accepted and the method repeats from step S1. On the other
hand, if consensus is reached, the new genesis block is
accepted, which means that the nodes 22 are safe to prune
the local copies of their blockchains stored in their local
disks 28 in a step S7. By reaching consensus on the same
genesis block and setting an amount of blocks to prune
through the pruning threshold parameter, it is advanta-
geously provided that 1) each of the nodes 22 can prune their
local copy of the blockchains at the same pruning point such
that all copies of the blockchain stored in the blockchain
network 20 are the same; and 2) each of the nodes 22,
regardless of a decision to prune or not, will be committed
to the same set of active blocks and smart contracts at the
same time. At that point, new blocks for are appended to the
new genesis block in a eighth step S8 as further transactions
are validated and new blocks are created for the transactions.
New blocks continue to be added until the threshold is
reached again, at which point processing returns to the first
step S1.

While the invention has been illustrated and described in
detail in the drawings and foregoing description, such illus-
tration and description are to be considered illustrative or
exemplary and not restrictive. It will be understood that
changes and modifications may be made by those of ordi-
nary skill within the scope of the following claims. In
particular, the present invention covers further embodiments
with any combination of features from different embodi-
ments described above and below. Additionally, statements
made herein characterizing the invention refer to an embodi-
ment of the invention and not necessarily all embodiments.

The terms used in the claims should be construed to have
the broadest reasonable interpretation consistent with the
foregoing description. For example, the use of the article “a”
or “the” in introducing an element should not be interpreted
as being exclusive of a plurality of elements. Likewise, the
recitation of “or” should be interpreted as being inclusive,
such that the recitation of “A or B” is not exclusive of “A and
B,” unless it is clear from the context or the foregoing
description that only one of A and B is intended. Further, the
recitation of “at least one of A, B and C” should be

US 11,556,247 B2

9

interpreted as one or more of a group of elements consisting
of A, B and C, and should not be interpreted as requiring at
least one of each of the listed elements A, B and C,
regardless of whether A, B and C are related as categories or
otherwise. Moreover, the recitation of “A, B and/or C” or “at
least one of A, B or C” should be interpreted as including
any singular entity from the listed elements, e.g., A, any
subset from the listed elements, e.g., A and B, or the entire
list of elements A, B and C.

What is claimed is:

1. A method for enabling pruning of a blockchain of a
blockchain network, the method comprising:

creating an active blocks commitments Merkle tree from

hashes of active blocks and creating an active smart
contracts commitments Merkle tree from hashes of
active smart contracts, the Merkle trees being created
after an amount of blocks created in the blockchain has
reached a threshold set by a pruning threshold param-
eter stored in the blockchain network;

storing hashes of the roots of the Merkle trees in a header

of a new block as a new genesis block;

broadcasting the new genesis block to the blockchain

network so that the blockchain network can reach
consensus on the new genesis block; and

committing to a set of the active blocks and active smart

contracts used respectively to create the active blocks
commitments Merkle tree and the active smart con-
tracts commitments Merkle tree upon the blockchain
network reaching consensus on the new genesis block.

2. The method according to claim 1, further comprising
pruning a local copy of the blockchain at a pruning point in
accordance with the pruning threshold parameter.

3. The method according to claim 2, wherein the local
copy of the blockchain is stored in a local disk space of a
node of the blockchain network, and wherein the pruning the
local copy of the blockchain comprises compressing blocks
of the blockchain stored in the local disk space and located
in the blockchain prior to the pruning point using a com-
pression algorithm or applying deduplication techniques to
the blocks of the blockchain stored in the local disk space
and located in the blockchain prior to the pruning point.

4. The method according to claim 2, wherein the local
copy of the blockchain is stored in a local disk space of a
node of the blockchain network, and wherein the pruning the
local copy of the blockchain comprises moving blocks of the
blockchain stored in the local disk space and located in the
blockchain prior to the pruning point out of the local disk
space to external storage.

5. The method according to claim 2, further comprising
using the pruned local copy of the blockchain for validating
future transactions.

6. The method according to claim 1, wherein the pruning
threshold parameter is stored in a core algorithm of the
blockchain network and defines an amount of blocks to keep
after the pruning and a minimum amount of blocks between
pruning events.

7. The method according to claim 6, wherein a counter is
used to track the amount of blocks created in the blockchain,
the counter being reset after each of the pruning events.

8. The method according to claim 7, wherein the pruning
events occur at regular intervals and each node of the
blockchain network commits to a set of active blocks and
active smart contracts used respectively to create the active
blocks commitments Merkle tree and the active smart con-
tracts commitments Merkle tree at each of the pruning
events.

10

15

20

25

30

35

40

45

50

55

60

65

10

9. The method according to claim 1, further comprising
storing the active blocks commitments Merkle tree and the
active smart contracts commitments Merkle tree together
with a Merkle tree for transactions in a body of the new
genesis block.

10. The method according to claim 1, wherein the active
blocks commitments Merkle tree and the active smart con-
tracts commitments Merkle tree are created by a node of the
blockchain network immediately upon reaching the thresh-
old such that the new genesis block is broadcast to the
blockchain by the node before another block, which was not
broadcasted to the blockchain network prior to reaching the
threshold, is able to be broadcast by another node of the
blockchain network.

11. The method according to claim 1, further comprising
using the new genesis block and an amount of blocks to keep
after the pruning defined by the pruning threshold parameter
as a new blockchain to be used for validating transactions,
and thereafter appending new blocks having the validated
transactions on the new genesis block in the new blockchain.

12. A miner node of a blockchain network comprising one
or more computational processors with a local disk space
containing a copy of a blockchain of the blockchain net-
work, the computational processors, alone or in combina-
tion, being configured to provide for execution of a method
comprising:

creating an active blocks commitments Merkle tree from

hashes of active blocks and creating an active smart
contracts commitments Merkle tree from hashes of
active smart contracts, the Merkle trees being created
after an amount of blocks created in the blockchain has
reached a threshold set by a pruning threshold param-
eter stored in the blockchain network;

storing hashes of the roots of the Merkle trees in a header

of a new block as a new genesis block;

broadcasting the new genesis block to the blockchain

network so that the blockchain network can reach
consensus on the new genesis block; and

committing to a set of the active blocks and active smart

contracts used respectively to create the active blocks
commitments Merkle tree and the active smart con-
tracts commitments Merkle tree upon the blockchain
network reaching consensus on the new genesis block.

13. The miner node according to claim 12, being further
configured to prune a local copy of the blockchain at a
pruning point in accordance with the pruning threshold
parameter.

14. The miner node according to claim 13, wherein the
pruning the local copy of the blockchain comprises com-
pressing blocks of the blockchain stored in the local disk
space and located in the blockchain prior to the pruning
point using a compression algorithm or applying dedupli-
cation techniques to the blocks of the blockchain stored in
the local disk space and located in the blockchain prior to the
pruning point.

15. The miner node according to claim 13, being further
configured to use the pruned local copy of the blockchain for
validating future transactions.

16. A non-transitory, computer-readable medium having
instructions thereon which, after implementation on one or
more computational processors with a local disk space
containing a copy of a blockchain of a blockchain network,
the computational processors, alone or in combination,
provide for execution of the method according to claim 1.

US 11,556,247 B2

11

17. A method for enabling pruning of a blockchain of a
blockchain network, the method comprising:

committing to a set of active blocks and active smart

contracts based on the blockchain network having
reached consensus on a new genesis block which
contains root hashes of an active blocks commitments
Merkle tree and an active smart contracts commitments
Merkle tree that were created, respectively, from hashes
of the active blocks and hashes of the active smart
contracts.

18. The method according to claim 17, wherein the root
hashes of the active blocks commitments Merkle tree and
the active smart contracts commitments Merkle tree are
contained in a header of the new genesis block.

19. The method according to claim 17, further comprising
pruning a local copy of the blockchain at a pruning point in
accordance with the pruning threshold parameter.

20. The method according to claim 17, further compris-
ing, by a light client, synchronizing with the blockchain
using the root hash of the active blocks commitment Merkle
tree.

10

15

20

12

