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Abstract—Permissionless blockchains such as Bitcoin have
long been criticized for their high computational and storage
overhead. Unfortunately, while a number of proposals address
the energy consumption of existing Proof-of-Work deployments,
little attention has been given so far to remedy the storage
overhead incurred by those blockchains. In fact, it seems widely
acceptable that full nodes supporting the blockchains have to
volunteer hundreds of GBs of their storage, to store and verify
all transactions exchanged in the system.

In this paper, we explore the solution space to effectively reduce
the storage footprint of Proof-of-Work based blockchains. To do
so, we analyze, by means of thorough empirical measurements,
how existing full blockchain nodes utilize data from the shared
ledger to validate incoming transactions/blocks. Based on this
analysis, we show that it is possible for full nodes to locally
reduce their storage footprint to approximately 15 GB, without
any modification to the underlying protocol. We also discuss other
client-side strategies to further reduce the storage footprint while
incurring negligible computational overhead on the nodes.

I. INTRODUCTION

Blockchains are receiving increasing attention among re-
searchers and practitioners, owing to their promise to effi-
ciently manage business processes in a decentralized manner.
Although the literature features a large number of blockchains
that notably differ in their leader election and consensus
protocols, almost all existing blockchains rely on the presence
of a shared ledger that enables blockchain nodes to agree on
the order and correctness of information (i.e., transactions and
blocks).

Permissionless blockchains (such as Bitcoin and Ethereum)
have been heavily criticized due to their high computational
and storage overhead. At the time of writing, Bitcoin—
arguably the most popular instantiation of a permissionless
blockchain—incurs an estimated annual energy consumption
of 105.70TWh (see [8]), and needs more than 370 GB of
space to store the ledger.

While the computational overhead in existing blockchains
can be remedied by replacing Proof-of-Work with newer, more
energy-friendly protocols such as Proof-of-Stake or Byzantine-
Fault-Tolerant protocols, little work exists to remedy the
storage overhead incurred by today’s blockchains.

A high storage overhead is mostly evident in those
blockchains that have witnessed the largest adoption. That is,
the larger is the adoption of a given blockchain platform, the
more transactions that are exchanged, and in turn the bigger
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is the storage required to maintain the shared ledger. On the
one side, keeping all transaction data is essential to ensure the
security of the system and to make sure that no transaction is
spent more than once. On the other side, storing hundreds of
GBs, is one of the main reasons why many users shy away
from running full nodes (i.e., nodes that store the full ledger).

Previous work has proposed a number of fixes and exten-
sions to mitigate the storage overhead of existing blockchain
platforms [10], [13], [14], [16]. Most proposals introduce
protocols to create and maintain periodic checkpoints (or
snapshot) of the ledger, so that data belonging to previous
snapshots can be safely deleted. However, implementing a
checkpointing strategy require either to modify the way the
blockchain works or a fork.

In terms of deployed solutions, Bitcoin allows users to prune
the blockchain storage by defining a threshold (in GB or
in block height) below which content in their local copy is
trimmed [3]. Such pruning techniques are available in Bitcoin
clients and can be locally used as a stand-alone, independent
solution to reduce the storage overhead of the blockchain.
However, the choice of the threshold value (either in terms
of disk space or in terms of block height) is left to the user
without any guidelines. On the one hand, storing too many
blocks may not be feasible for all clients and would cause
unnecessary data to be stored on disk. On the other hand,
storing too few blocks would result in the deletion of data
that may still be necessary to verify unspent transactions.
Note that verification of transactions for which data has been
deleted, incurs in additional communication overhead to fetch
the required data from the network.

In this paper, we address the problem of efficiently man-
aging the storage overhead incurred by existing blockchains
and present the first study on how blockchain nodes use data
from the shared ledger to validate transactions and blocks.
We focus on Bitcoin since (i) it is arguably the most popular
blockchain where the storage problem is most relevant, and
(ii) publicly available data allows us to study the behavior
of the network over a fairly long time period and obtain
meaningful insights towards reducing the storage footprint. To
do so, we start by analyzing, by means of thorough empirical
measurements, how existing Bitcoin nodes manage data from
the shared ledger to validate incoming transactions/blocks.
Based on these findings, we explore the solution space to
effectively manage the storage of existing PoW blockchains.
To this end, we adapted a blockchain parser based on [5]
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to compute the storage savings of the various strategies we
devise.

Unlike common beliefs, our results show that it is possible
for full Bitcoin nodes to locally reduce their storage footprint
by approximately 95.9% without any modification to the un-
derlying protocol and with no appreciable overhead to validate
transactions. Moreover, we show that an archival node—
wishing to store all information in the blockchain without
any loss—could save up to 29% of storage space without
losing any information from the ledger. This results in 5-10%
more storage savings when compared to existing compression
algorithms that can achieve a maximum compression rate of
up to 24% on the Bitcoin ledger—and without requiring the
heavy computational load associated with (de-)compression.
Our parser will be released as open-source to better aid the
community in estimating the actual storage needs of Bitcoin
nodes as the ledger grows in size. We stress at this point that
our observations are not restricted to Bitcoin and equally apply
to the myriad of altcoins (or forks of the Bitcoin blockchain)
that are currently deployed (e.g., Dogecoin, Bitcoin Cash,
Litecoin, Monacoin).

The remainder of the paper is organized as follows. In
Section II, we overview the storage requirements in existing
blockchains and discuss related work in the area. In Sec-
tion III, we empirically measure the transaction age and the
storage overhead incurred in current Bitcoin transactions. In
Section IV, we explore the space of possible solutions that
may allow a Bitcoin node to reduce the ledger’s footprint on
its local storage and we evaluate the effectivness of those
strategies in Section V. Finally, we conclude the paper in
Section VI.

II. BACKGROUND & RELATED WORK

In this section, we introduce relevant background on Proof-
of-Work (PoW) blockchains, with a focus on transactions
validation and storage.

A. The Need for Storage in Existing Blockchains

PoW-based blockchains leverage Proofs of Work (PoW) as
a public timestamping mechanism in order to prevent double-
spending attacks. In practice, transactions are broadcasted and
special nodes called miners add those transactions that they
consider valid in a so-called block. A block is valid only if it
contains valid transactions and the solution to a cryptographic
puzzle. New blocks are cryptographically tied to previous
ones via hash chains and, even if different chains of blocks
can co-exist, only the longest chain is considered valid. In a
nutshell, only transactions included in the blocks of the longest
chain are considered valid. A miner that outputs a new block,
broadcasts it so that other nodes can check its validity by
checking the validity of its transactions and the correctness of
the solution to the cryptographic puzzle. Nodes that are not
mining (i.e., that do not contribute to block creation) are called
full nodes. These nodes verify all exchanged information
(blocks and transactions) in the blockchain and therefore have
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Fig. 1. Evolution of the number of Bitcoin full nodes over time. Estimates
are adapted from [12].

to store the full blockchain ledger1—albeit without any explicit
incentives.

For example, at the time of writing, a miner that succeeds
in mining a block receives a fixed revenue of 6.25 BTCs and
a variable profit comprising of all the fees that are included
in the confirmed transactions. Full nodes are not rewarded by
any means in spite of their critical role to preserve the security
of the whole system.

Given the huge adoption of PoW-based blockchains 2, the
storage requirements on full nodes has considerably increased.
For instance, in 2014, the Bitcoin ledger was approximately
15 GBs. Throughout 2021, Bitcoin’s ledger grew to approxi-
mately 371 GBs. In turn, as shown in Figure 1, the number
of full Bitcoin nodes (that store the full ledger) dropped from
200,000 in 2014 to approximately 5,000 in 2016. Given lack
of incentives, this number is only expected to decrease in the
future.

We note that the majority of blockchain platforms also allow
nodes that act as “lightweight clients”. A lightweight client—
usually a device with limited resources such as a smartphone—
only downloads and verifies a small part of the chain. For
example, the Bitcoin community provides the BitcoinJ3, Pico-
Coin4 and Electrum5 clients implementing the Simple Payment
Verification (SPV) mode [15], where the clients connect to
a full node that has access to the complete blockchain and
can help the client to confirm transactions. While lightweight
clients ease the adoption of blockchain technology, we argue
that full nodes are essential for a blockchain platform to thrive
and solutions to minimize the burden (including the storage
burden) of full nodes are necessary.

B. Transactions & Scripts

Many permissionless blockchains (such as Bitcoin) rely
on the concept of Unspent Transaction Output (UTXO) to
capture transactions in the platform. Essentially, a transaction
is defined by a set of inputs (TxIn) and outputs (TxOut) that

1Without this information, an adversary can perform history corruption
attacks—effectively presenting another chain of blocks (and the transactions
therein) as the “main” chain.

2For instance, Bitcoin processes around 2000 transactions every 10 minutes
at the time of writing.

3https://bitcoinj.org/
4https://github.com/jgarzik/picocoin
5https://electrum.org/

https://bitcoinj.org/
https://github.com/jgarzik/picocoin
https://electrum.org/


Fig. 2. Example of a Bitcoin transaction with 1 input and 2 outputs.

dictate the transfer the ownership of a sets of coins, specified
in the TxIns, to a set of Bitcoin addresses, each of which get
the amount of coins specified in the TxOuts. Concretely, each
TxIn refers to one or more TxOuts of older transactions.

A transaction is invalid if the value of its TxOuts exceeds
the value of its TxIns. However, if the TxIns value exceeds the
value of the TxOuts, the miner who outputs the block storing
the transaction can claim the difference as a transaction fee.
The exact conditions under which an output can be spent are
encoded with a set of scripts, and only the participants that
are able to provide the correct input to the script, such that
it evaluates to true upon execution, are allowed to spend the
coins output by a given Bitcoin transaction.

Scripts refer to a custom non-Turing complete scripting
language that are designed with the aim to support different
types of transactions and extend the applicability of transac-
tion beyond the simple transfer of funds. Scripts are stack-
based, support a number of functions (commonly referred
to as opcodes), and either evaluate to true or false. The
language supports dozens of different opcodes ranging from
simple comparison opcodes to cryptographic hash functions
and signature verification. Since scripts are supposed to be
executed by all blockchain node, they could be abused to
conduct denial-of-service attacks; therefore, a considerable
number of opcodes have been temporarily disabled. This was
one of the main reasons why scripts do not provide rich
support when compared to standard programming languages.
The most common type of scripts found in Bitcoin’s historical
data are pay-to-pubkey-hash (P2PKH), pay-to-pubkey (P2PK),
and pay-to-script-hash (P2SH).

Figure 2 depicts a simplified transaction with one input and
two outputs. In this example, the transaction spends w BTCs
to address X and x BTCs to address Y . The outputs that have
not yet been spent (i.e., the two outputs of the transaction), are
commonly referred to as unspent transaction outputs (UTXO).

Bitcoin keeps an up-to-date database of UTXOs, which it
updates by adding or removing TxOuts created, or spent, by
new transactions.

C. Existing methods to shrink storage

As mentioned earlier, little work has addressed the problem
of reducing the storage footprint of blockchain nodes..

Florian et al., [11] suggest that UTXOs can be deleted and
space can be saved if one is willing to trust other nodes to
verify the validity of transactions including UTXOs that have
been locally erased—essentially, the node acts as a lightweight
client if the transaction to be validated includes at least one
UTXO that has been deleted.

A number of proposals suggest to limit the size of the
data to be stored by using an account-based model where
the system keeps track only of those accounts that have a
positive balance [9], [16]. Other proposals [9], [10], [13], [14]
introduce extensions to existing systems to create and maintain
periodic snapshots (or checkpoints) of the ledger, so that data
belonging to previous snapshots can be safely deleted.

Real-world solutions focus on “pruning”. For instance,
pruning in Bitcoin (and other altcoins) was introduced with
Bitcoin Core v0.11 [3] in 2015. Concretely, nodes can set a
flag to specify the amount of disk space that Bitcoin can use
for blocks and data, starting from a minimum of 550 MB
(288 blocks, about two days worth of blocks). However, the
choice of the threshold value (either in terms of disk space
or in terms of block height) is left to the user without any
guidelines. On the one hand, storing too many blocks may
not be feasible for all clients and would cause unnecessary
data to be stored on disk. On the other hand, storing too
few blocks would result in the deletion of data that may still
be necessary to verify unspent transactions. Such nodes can
neither relay missing blocks, nor maintain transaction indexes
anymore. Note that verification of transactions for which data
has been deleted, incurs in additional communication overhead
to fetch the required data from the network.

More recently, blockchains such as Bitcoin introduced the
segregated witness (segwit) structure, which stores data re-
quired to validate transactions, that is, scripts and signatures,
outside of the associated blocks [4]. While this solution
reduces the communication overhead, it does not necessarily
lead to a reduction in the storage overhead, since nodes must
still store all the scripts/signatures that are relevant for the
verification of unspent transactions.

III. DYNAMICS OF BITCOIN STORAGE

In this section, we analyze the Bitcoin ledger in order to
understand the underlying dynamics of blocks, UTXOs and,
more in general, data utilization in the blockchain. Our goal is
to extract insights that may aid the design of a storage-saving
strategy.

We conducted these experiments by lever-
aging two existing open source tools, namely
bitcoin-blockchain-parser [5] and
bitcoin-tools [6], both written in Python. The
bitcoin-blockchain-parser parses Bitcoin’s raw
data stored on disk by Bitcoin’s software (bitcoind). We
use it to scan Bitcoin’s historical data (e.g., blk*.dat files)
for the range of blocks to be analyzed, and for the entire



blockchain to apply a storage optimization method. The
library bitcoin-tools parses Bitcoin’s block index and
chainstate. The block index stores information for every block
(e.g., block header and number of transactions in that block),
and where each block is stored on disk. The chainstate
stores Bitcoin’s current UTXO set. Our tool leverages
bitcoin-tools to fetch and decode the UTXO set. We
used these parser to analyze the Bitcoin blockchain from the
genesis block until block 684,816 (minted on May-25 2021).

A. UTXO Distribution and Lifespan

We start by looking at the “current” UTXO set (i.e., UTXO
set at block 684,816) made of 123,394,434 UTXO in total. As
shown in [7], a very large number of UTXOs are “dormant”,
i.e., they have been confirmed early in the blockchain’s history
and not spent thus far. Namely, our measurements show that
most of the blocks (84%) confirm at least one of the current
UTXOs. The first 105,000 blocks (i.e., between Jan-09 2009
and Jan-28 2011) account for 42,802 of the UTXOs in the
current UTXO set. By examining the latest 25,000 blocks, we
only find 642 UTXOs.

There may be multiple reasons why a UTXO has been
created a long time ago and never been spent. One possible
reason is that the owner is holding those UTXOs speculating
that BTC value will increase. Other options are, e.g., dust
UTXO or UTXO belonging to secret keys that have been lost.
Pérez-Solà et al., [17] studied dust or unprofitable UTXOs in
Bitcoin and found that, depending on the spending fee, up to
50% UTXOs at block 507,964 (minted on Feb-6 2018) could
be considered dust.

In order to distinguish whether holding UTXOs for a
very long time is common practice throughout the Bitcoin
blockchain lifetime, we look at the lifespan of a UTXO, that
is, the time—measured in blocks—between its addition to the
blockchain (i.e., its parent block is added to the chain) and its
expenditure (i.e., the block storing a transaction that spends
the UTXO is added to the chain) at different time snapshots
in the Bitcoin blockchain. Figure 3 shows the 50th, 90th,
and 95th percentile of the UTXO lifespan across different
time intervals. The first interval comprises the time from the
genesis block until block 104,999, minted on Jan-28 2011:
the blue curve of Figure 3 shows that less than 75% of the
UTXOs created within blocks 0-104,999 were actually spent
before block 104,999. The second time interval goes from the
genesis block until block 419,999, minted on Jul-09 2016: the
corresponding dashed orange curve shows that UTXOs created
within blocks 0-419,999 have a different behavior from the
ones in the previous interval; roughly 90% of those UTXOs
have a lifespan smaller than 100,000 blocks. Finally, the third
interval consider all blocks up to 684,816 (minted on May-
25 2021): here we witness (green curve with dashes/dots) a
trend similar to the one in the previous interval as 90% of the
UTXOs are spent within 42,000 blocks.

In a nutshell, Figure 3 shows that, albeit a large number of
UTXOs are dormant—especially the ones created during the
early years of Bitcoin—most of the UTXOs have a rather short
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Fig. 3. Lifespan (in blocks) of UTXOs created during the first 105,000,
420,000, and 682,816 blocks.

lifetime. More precisely, we note that 90% of all UTXOs are
currently spent within 42,586 blocks (cf. Figure 3). As Bitcoin
becomes increasingly popular, we expect the UTXO lifespan
to decrease over time.

B. Data Distribution within Bitcoin Transactions

Next, we focus on the various data types that are included in
a Bitcoin transaction and compute the fraction of transaction
data used to store the block header, transaction header, TxIns,
TxOuts, and scripts. Here, we do not distinguish between the
individual scripts—rather we measure deduplication level in
scripts regardless of their type. To take into account segregated
witness data, we divide the analysis in two different time-
periods: the period before the introduction of segwit, and the
one after the introduction of segwit.

Figures 4 show the storage fraction that each data type
occupy in a Bitcoin transaction, for transactions between
block 0 and block 481,823, i.e., before the introduction of
segwit. Figures 5 provides the same information but for
transactions between block 481824 and 684816, that is, after
the introduction of segwit. Our results show that—perhaps
unsurprisingly—transaction scripts account for more than 50%
of the size of a transaction.

For example, Figure 4 reveals that input scripts and output
scripts account for about 62% and 12% of a transaction size,
respectively. Figure 5 shows that segregated witnesses reduced
the fraction of storage used for input scripts, while adding
about 25% of witness data. The space ratio of other data types
remain, as expected, unaffected by segwit.

Given the impact that scripts have on the size of a trans-
action, we investigate the duplication level of scripts within
Bitcoin’s ledger. Table I, shows that—in addition to their
considerable size—there is large amount of duplicated data
among Bitcoin’s script. Concretely, Table I shows that about
4,000,000 scripts stored in a TxIn and 40,000,000 scripts
stored in a TxOut repeat at least twice. The huge difference
between TxIn and TxOut scripts duplication may be caused by
unclaimed coins, as well as invalid scripts, or unredeemable
transactions (e.g., OP RETURN). Nevertheless, our results in
Table I shows that in spite of their high duplication, scripts
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only occupy a small fraction of the Bitcoin ledger storage
(approximately 1.5 GB).

C. Unused Bytes in Bitcoin Transactions

Finally, we look at unused bytes in each of a transaction’s
fields. In particular, we observe that some fields in a Bitcoin
transaction have a (large) fixed size; these fields have been
designed with the foresight to scale as Bitcoin adoption
increases. At present time, the following fields are however
largely unused.

• Transaction headers:
– version: 4 bytes encoding the transaction’s data

format version. Notice that there only 2 versions
available at the time of writing.

– flag: 2 bytes indicating the presence of witness data.
– lock time: 4 bytes encoding either the block number

or the timestamp at which this transaction becomes
unlocked. If the transaction does not have a time
lock, this field has a default value of 0xFFFFFFFF.

• TxIns:

– previous output: 36 bytes are reserved to encode the
hash of the transaction referenced by this input (32
bytes) and the index of the specific output to spend in
that transaction (4 bytes). Notice that it might suffice
to reference the block height and the transaction
index at that block height (4 bytes + 2 bytes) along
with a variable length integer to encode the specific
output to spend in the transaction.

– sequence: 4 bytes that determine the transaction ver-
sion as defined by the sender. There only 2 versions
available at the time of writing.

• TxOuts:
– value: 8 bytes to encode the value to be spent (which

is a rather large field size).

IV. LOCAL STORAGE OPTIMIZATIONS

Based on the observations provided in Section III, we
explore the space of possible solutions that allow a Bitcoin
node to reduce the ledger’s footprint on its local storage.
Since we are looking at solutions that can be applied by
a node to its local storage without aid by its peers and
without modifications to the underlying protocol, we discard
techniques that require cooperation among nodes or changes
to the underlying protocol (cf. Section II).

The Bitcoin whitepaper originally foresaw two different
roles in the Bitcoin blockchain: a full node and a lightweight
client. Lightweight clients cover the needs of basic blockchain
users that send or receive transactions but entrust peers to
validate transactions. Full nodes were originally designated to
contribute to the consensus protocol, by storing and verifying
all of the blockchain data, as well as mining new blocks.
As Bitcoin grew in adoption and the difficulty of mining
increased, a new dedicated miner role emerged; these nodes
are not meant to store or verify blockchain data, but they are
merely optimized to compute PoW solutions.

Beyond these traditional roles, a new type of node is
becoming popular: the archival node. Such nodes store a full
copy of the blockchain for offline auditing and verification
purposes but are not interested in real-time verification of
transactions.

Given the different types of Bitcoin nodes, one can envision
different space-saving strategies that depend on the role of
nodes in the ecosystem. For instance, an aggressive data-
saving strategy that favors space reduction over the ability to
verify all transactions may work for some node types, whereas
others might value verifiability of information more than stor-
age savings. In the following, we explore the space of storage-
saving options rooted on the observations of Section III.

A. Storage Optimization Toolbox

Pruning based on UTXO lifespan (PRUNE). The pruning
functionality offered by the Bitcoin client is a lossy mechanism
and, in case pruned UTXOs are spent, the node must fetch data
from the blockchain for verification (thus incurring additional
communication overhead). Our measurements in Section III



Script Type # of Duplicated Scripts avg length Tot. size Tot. size (Dedup.)
TxIn script + segWit ∼ 4 100 000 37.6 B 177 MB 16 MB

TxOut script ∼ 40 500 000 24.8 B 1.3 GB 200 MB
TABLE I

DUPLICATION OF SCRIPTS IN THE BITCOIN BLOCKCHAIN UNTIL BLOCK 545,000.

provide solid means to choose a pruning threshold, based on
the probability that one of the pruned UTXOs is spent. Ac-
cording to Figure 3, UTXOs that are older than 42,586 blocks
can be pruned, if one tolerates that with 10% probability one
of the pruned UTXO will be spent.

Given the moderate storage costs of hashes, we argue that
the block hashes should be kept in this strategy—even for
those blocks that are pruned. As discussed in Section IV-B,
this ensures that the security of the system is not compromised
against sophisticated attacks.

Minimizing Merkle-tree data (MINIMIZE). We note that
transactions in a block are arranged as leaves of a Merkle
tree, so that the root can be used as the authentication token.
Rather than keeping all leaves of the tree, one could simply
keep the “co-path” of transactions with unspent UTXO. Given
a block with n transactions, the co-path to verify an unspent
one, amounts to roughly log n nodes of the Merkle tree. Hence,
given k unspent transactions in a block, the amount of tree
nodes to be stored is k · log n. Given that a full binary tree has
n − 1 internal nodes, the strategy of keeping the co-path of
unspent transactions reduces storage as long as k < n/ log n.

Notice that approximately 16% of the blocks have no
UTXOs and can therefore be removed without any penalty. For
those blocks, no intermediate information about the Merkle
root/tree must be stored. Nodes can simply store the block
hash as a means to compute the longest chain.

Slack space reduction (SLACK). As shown in Section III,
there is considerable room to remove the slack space in several
transaction header fields, namely:

• version: Since there are currently only 2 transaction
versions, we can limit the size of this field to 1 bit instead
of 4 bytes.

• flag: Given that this field is only used to indicate the
presence of witness data, we can also limit its size to 1
bit.

• lock time: One can adjust this field as follows: if the
transaction does not have a time lock, we include a bit
flag. Otherwise, we leave the lock field set time.

Similar techniques can also be applied to the transaction
input fields, namely:

• previous output: One can adjust this field to use a com-
bination of block height and referenced transaction index
at that block height (4 bytes + 2 bytes) instead of the 32
bytes hash of the transaction, and a variable length integer
to encode the specific output to spend in the transaction.

• sequence: Since there are currently only 2 transaction
versions, we can limit the size of this field to 1 bit instead
of 4 bytes.

Moreover, one can also optimize slack space in the trans-
action outputs by modifying the current 8-byte value field to
accommodate for a variable length integer field.

Finally, one can, in theory, deduplicate existing scripts by
implementing a key-value store for efficient script storage. In
particular, given a duplicated script, one can store it in the
key-value store (KVS), indexed by its hash, and later replace
the script with its hash in every transaction when the script
appears. The local node would then fetch scripts from the
key-value store, any time the transaction needs to be verified.
However, our experiments show that such a strategy would
result in considerable I/O (to access the KVS) only to result
in modest storage savings. Namely, as shown in Table I, scripts
(that could be deduplicated) occupy approximately 1.5 GB of
storage; replacing such scripts with KVS pointers would only
yield a modest saving of 1.2 GB (0.3% of the total Bitcoin
ledger storage).

B. Storage-efficient modes

We now analyze the security and performance tradeoffs
of the various storage-saving strategies discussed above. In
particular, for each strategy, we analyze the storage savings
and the security implications for a node adopting a particular
strategy, in comparison with a full node—one that stores the
full blockchain. In terms of security, we focus on whether
a node can validate all transactions or trace back a coin
expenditure throughout the entire ledger.

In our analysis, we distinguish between “lossy” and “loss-
less” strategies. A lossless strategy, as the name suggests, does
not imply any information loss compared to the option of
storing the full blockchain but might imply a computational
penalty (see discussion below) when verifying transactions.
Differently, a lossy strategy incurs in loss of information
when compared to storing the full blockchain and might
incur a communication penalty when verifying transactions—
as missing information must be fetched from the network.

Notice that SLACK is a lossless strategy and, as such, have
no impact on security. That is, a node using SLACK preserve
the same ability of a full node of verifying transactions and
tracing back coins.

On the other hand, MINIMIZE and PRUNE are lossy
strategies. PRUNE does not allow to verify transactions that
include those UTXOs that have been removed. Moreover, both
strategies do not allow nodes to trace coin expenditure, since
some information (e.g., transactions confirmed in blocks prior
to the pruning threshold in PRUNE or transactions for which
the UTXOs are spent in MINIMIZE) has been removed.
Hence, a node that uses MINIMIZE and/or PRUNE may
need to contact a full or archival node to obtain the missing



TABLE II
EVALUATION OF THE VARIOUS STORAGE-SAVING STRATEGIES.

Storage Strategy Storage overhead (GB) Storage reduction (%)
Full-ledger storage (baseline) 371.4 GB 0%
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snappy 335.4 GB 9.7%
lzop 325.3 GB 12.41%
lz4 318.1 GB 14.35%

bzip2 302.8 GB 18.47 %
gzip 300.9 GB 18.98%
zstd 294.9 GB 20.59%
lzma 279.6 GB 24.71%

St
or

ag
e-

ef
fic

ie
nt

M
od

es

PRUNE 51.20 GB 86.22%
SLACK 265.1 GB 28.62%

MINIMIZE 54.4 GB 85.3%
MINIMIZE + PRUNE 16.5 GB 95.56%
MINIMIZE + SLACK 50.6 GB 86.37%

PRUNE + SLACK 42.4 GB 88.58%
PRUNE + MINIMIZE + SLACK 15.2 GB 95.90%

data when a transactions with a pruned UTXO must be verified
or a coin must be traced back. Nevertheless, we argue that
MINIMIZE and/or PRUNE do not affect the ability of a
node to verify transactions including UTXOs that have not
been deleted. In particular, even if not all UTXOs are kept,
a node that uses either strategy still keeps the block hashes.
Thus, a fraudulent transaction would be considered as valid
only if the adversary is able to find a hash collision. In
case of PRUNE, a proper choice of the pruning threshold is
particularly important. One needs to set it high enough so that
the vast majority of UTXOs can be verified locally (without
the need to fetch data from other peers) but low enough not
to occupy large storage space.

Notice that these strategies can be combined with each
other to increase the utility of the nodes—given the role
they envision to take in a blockchain (i.e., active verifier, or
passive archival node). In particular, archival nodes can easily
adopt SLACK, while active verifiers could use a combination
PRUNE and MINIMIZE, optionally with SLACK.

V. EVALUATION

In this section, we evaluate the effectiveness of the strategies
discussed in Section IV. To do so, we created a software tool
in Python that can be executed locally to estimate the storage
footprint of the Bitcoin ledger, given any combination of the
storage-saving strategies we devise. The tool takes as input any
combination of the storage-saving strategies of the previous
section. Subsequently, it parses the Bitcoin ledger and outputs
the corresponding storage footprint needed to store the ledger.
As mentioned earlier, our tool adapts two existing open-source
parsers, namely bitcoin-blockchain-parser [5] and
bitcoin-tools [6], both written in Python.

We conducted our experiments on a machine equipped with
an Intel®Xeon®CPU E-2176G @ 3.70GHz and 128GB DDR4
RAM.

Storage savings: We compare the performance of our space-
saving strategies against two different baselines: the full cur-
rent ledger, and a ledger compressed with standard compres-
sion algorithms, namely:

• bzip2: lossless compression using the Burrows-Wheeler
block sorting text compression algorithm, and Huffman
coding.

• gzip: lossless compression using Lempel-Ziv coding
(LZ77).

• lzma: lossless compression using a dictionary compres-
sion scheme similar to Lempel-Ziv coding (LZ77).

• lzop: lossless compression using the Lem-
pel–Ziv–Oberhumer (LZO) algorithm.

• lz4: lossless data compression algorithm focused
on compression and decompression speed. Based on
Lempel-Ziv coding (LZ77).

• snappy: lossless compression algorithm developed by
Google. It does not aim for maximum compression, or
compatibility with any other compression library; instead,
it aims for very high speeds and reasonable compression
[2].

• zstd: lossless compression algorithm developed by
Facebook. It is a fast lossless compression algorithm,
targeting real-time compression and better compression
ratios [1].

To apply standard compression to the Bitcoin ledger, we
first created a single non-compressed archive file of the ledger
using tar, then fed it to the compression algorithm.

We note that compressing the ledger typically entails
trading-off data saving for performance. In particular, one
could compress the whole ledger to obtain the best savings in
terms of space; however, verifying a transaction would require
de-compressing the ledger and that may incur considerable
delays. Alternatively, one could compress one block at a time:
this is likely to save less space but, at the same time, it is
likely to perform better when verifying a transaction since



one has to de-compress only some blocks. Our measurements,
however, show that even the best compression strategy (i.e.,
compressing the whole ledger) only yields modest results. For
instance, among all studied compression algorithms, lzma
achieves the best storage saving and only results in around
a 24% storage saving. When compared to SLACK, the latter
strategy achieves a 5% increase (i.e., 29%) in storage savings
(cf. Table II) while ensuring zero information loss from the
Bitcoin blockchain; it also exhibits significant reductions in
computational load required for compression/de-compression.

As shown in Table II, other strategies outlined in Section IV
achieve much higher storage efficiency—while requiring less
computational overhead. For instance, MINIMIZE results in
94% storage savings and PRUNE can achieve a savings of
86% while ensuring that 90% of all UTXOs can be verified
with the local data storage (cf. Section III).

Various combinations of the aforementioned strategies seem
to be also very effective. For instance, the combination of
SLACK and PRUNE results in 88.58% storage savings, while
a straightforward combination of MINIMIZE and PRUNE
results in up to 95.56% storage savings. Finally, the combi-
nation of PRUNE, MINIMIZE, and SLACK can result in
huge storage savings, up to 95.90%. That is, the reliance on
SLACK would only result in mediocre storage gains when
PRUNE and MINIMIZE are being used.

Computational overhead: In order to assess the computa-
tional overhead of the proposed strategies, we additionally
measured the time it took to our tool to run MINIMIZE and
SLACK over each block between block 682,807 and block
682,816 of the Bitcoin blockchain. On average. MINIMIZE
took 2.1ms (std-dev 0.9ms) whereas SLACK took 102.9ms
(std-dev 58.7ms). We conclude that both strategies incur
in negligible processing overhead. We did not evaluate the
overhead incurred in PRUNE since it merely requires the peer
to delete a given block.

VI. CONCLUDING REMARKS

In this paper, we tackled an often overlooked issue of
today’s blockchains—reducing the ledger size.

We observe that current blockchains do not employ storage-
efficient strategies, their ledger features considerable redun-
dancy, and they rarely utilize all the data stored in the ledger
for daily operations. We apply our reasoning to Bitcoin’s
data storage, and show, by means of empirical measurements,
that the ledger storage can be considerably reduced without
modifying the underlying consensus protocol nor affecting the
security of the verification process. To this end, we adapted the
blockchain parser from [5] and measured the storage footprint
of various local strategies that can be directly employed at
client-side by full nodes in Bitcoin.

Our evaluation results show that standard compression al-
gorithms are not effective in capturing the intrinsic nature of
Bitcoin’s ledger and only result in up to 24% storage savings.
On the other hand, more fine-grained lossless compression

strategies—those that specifically target unused bytes or du-
plication in the blockchain—prove to be more effective and
could lead to storage savings up to 29%.

In terms of lossy strategies, our results also show that
ledger pruning—a popular strategy to reduce the local storage
footprint of nodes—would require at least 51 GB of storage
space in Bitcoin in order to process the vast majority of those
UTXOs in circulation. Besides laying the grounds that govern
the effective choice of a suitable pruning threshold, we also
show that pruning can be combined with other lightweight
strategies to incur a lower storage footprint, as low as 15.2
GB without incurring significant computational overhead on
nodes.

We plan to release our parser as open-source to better aid the
community in estimating the actual storage needs of Bitcoin
nodes as the ledger grows in size. Finally, we stress that
our observations and results are not restricted to the Bitcoin
blockchain and equally apply to the myriad of altcoins (or
forks of the Bitcoin blockchain) that are currently deployed
(e.g., Dogecoin, Bitcoin Cash, Litecoin, Monacoin).
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