
Towards Scalable and Private Industrial Blockchains

Wenting Li
NEC Laboratories Europe, Germany

wenting.li@neclab.eu

Alessandro Sforzin
NEC Laboratories Europe,

Germany
alessandro.sforzin@neclab.eu

Sergey Fedorov
NEC Laboratories Europe, Germany

sergey.fedorov@neclab.eu

Ghassan O. Karame
NEC Laboratories Europe,

Germany
ghassan@karame.org

ABSTRACT
The blockchain emerges as an innovative tool that has the
potential to positively impact the way we design a number
of online applications today. In many ways, the blockchain
technology is, however, still not mature enough to cater for
industrial standards. Namely, existing Byzantine tolerant
permission-based blockchain deployments can only scale to
a limited number of nodes. These systems typically require
that all transactions (and their order of execution) are pub-
licly available to all nodes in the system, which comes at
odds with common data sharing practices in the industry,
and prevents a centralized regulator from overseeing the full
blockchain system.

In this paper, we propose a novel blockchain architecture
devised specifically to meet industrial standards. Our pro-
posal leverages the notion of satellite chains that can pri-
vately run different consensus protocols in parallel—thereby
considerably boosting the scalability premises of the sys-
tem. Our solution also accounts for a “hands-off” regulator
that oversees the entire network, enforces specific policies by
means of smart contracts, etc. We implemented our solution
and integrated it with Hyperledger Fabric v0.6 [2].

1. INTRODUCTION
First introduced with Bitcoin [12] in 2009, the blockchain

is rapidly gaining ground as a key technology, especially in
the financial and retail sectors. A number of large indus-
trial players, such as IBM, Microsoft, Intel, and NEC are
currently investing in exploiting the blockchain in order to
enrich their product portfolio. Recent years witnessed the
surge of a number of blockchain frameworks proposals such
as Ripple [3], Ethereum [14], Corda [9], and Hyperledger [1],
among others.

A number of researchers and practitioners speculate that
the blockchain technology can change the way we see a num-
ber of online applications today. Although the technology is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

still not mature, it is expected that the blockchain will stim-
ulate considerable changes to a large number of products,
and will positively impact the digital experience of many
enterprises around the globe.

However, experience with existing blockchain proposals
reveals that there are still many challenges that need to be
overcome prior to any large scale industrial adoption of the
blockchain paradigm:

Privacy Existing blockchain deployments rely on the avail-
ability of transactions and their order of execution
to all nodes in the system. Clearly, this comes at
odds with current industry practices which only re-
strict data sharing and distribution to the intended
stakeholders. While some solutions propose to selec-
tively encrypt transactions, such approaches require
delicate key management infrastructure, and still al-
low the remaining nodes in the system to learn about
the occurrence of a particular exchange in the system.

Scalability Existing permissionless blockchains (e.g., Bit-
coin) are able to scale to a considerable number of
nodes at the expense of attained throughput (e.g., Bit-
coin can only achieve 7 transactions per second [8]).
On the other hand, permission-based blockchains can
achieve relatively higher throughput, but can only scale
to few hundred nodes. However, one needs to cater for
both performance and scalability to meet industrial
standards.

Lack of Governance One of the main attractions of the
blockchain lies in its decentralized aspects. However,
organizations are typically not democratic entities, and
want to retain control of their systems in order to en-
force specific business logics and policies.

In this paper, we address this problem, and propose a
novel blockchain architecture devised specifically to meet
industrial standards. Our proposal leverages the notion of
satellite chains that form interconnected, but independent,
subchains of a single blockchain system. Nodes join a given
satellite chain if they want to transact with another set of
particular nodes. Each satellite chain maintains its own pri-
vate ledger, thus preventing any non-member node from re-
ceiving or accessing any given transaction in its ledger. Our
solution supports an unbounded number of active chains at
any time; different satellite chains can run different con-
sensus protocols in parallel—thereby allowing for unprece-
dented levels of scalability in the system. Satellite chains

can, however, transfer assets among each other at any point
in time without compromising the security and soundness
guarantees in the system. Finally, our solution allows a reg-
ulator to oversee the entire network, enforce specific policies
by means of smart contracts, etc.

Our proposal can be easily integrated within existing block-
chain platforms. As a proof of concept, we report on the in-
tegration of satellite chains within Hyperledger Fabric v0.6.
As a by-product, we note that by effectively organizing nodes
within interconnected satellite chains, our proposal emerges
as the first practical solution for realizing blockchain shard-
ing based on node relationships.

2. BACKGROUND
In what follows, we briefly overview a number of existing

blockchain efforts.

Hyperledger Fabric.
Hyperledger is an open source project, managed by the

Linux foundation, comprising a number of major banks and
IT firms.

Hyperledger is a permission-based blockchain that requires
that all prospective members register and acquire an iden-
tity (i.e., an enrollment certificate) before attempting to con-
nect to the network and submit transactions. The fabric’s
Membership Services handle both registration process and
identity management.

The system comprises clients, non-validating peers, and
validating peers. Consensus agreement is performed by val-
idating peers who validate the transactions, execute them
through smart contracts (or chaincodes), and maintain the
ledger. Fabric also supports “non-validating peers” which,
as the name implies, assume non-consensus related tasks in
the network.

Clearly, the validating peer is the core element of this ar-
chitecture. However, placing key functionalities—chaincode
and consensus execution—within the same blockchain node
might hinder scalability. For example, validation of different
transactions cannot be parallelized, because all validators
must execute them sequentially by invoking chaincodes and
running consensus on each of them. Hyperledger is planning
the release of Fabric version 1.0 which brings major archi-
tectural changes to enhance its modularity and scalability.
We discuss this extension in more details in Section 4.

Corda.
Corda is a recent distributed ledger framework proposal

by R3. Corda introduces the notion of flows to improve
transaction privacy. Flows establish point-to-point connec-
tions between nodes that wish to carry out transactions.
Thus, transactions will be only visible to the contracting
nodes. Corda’s transactions, following Bitcoin’s UTXO model
[12], are linked to each other in a consumer-producer model:
they take current ledger’s entries as inputs to produce new
ledger’s entries as outputs. Nodes then verify the entire
transaction graph upon the receipt of a new transaction.

The consensus protocol in Corda is run by notaries, a clus-
ter of nodes that maintains the ledger, and ensures that no
conflicting transactions is included therein. There can be
multiple notaries in the network, and nodes can choose by
which notary cluster they want their transactions to be final-

ized. During the consensus process, notaries are required to
receive and verify all the transactions of their “subscribed” nodes.

However, this approach achieves privacy only for message
transmission, which is orthogonal to consensus realization in
the network. Namely, notaries need to see transactions to
check for double spending; when traversing the transaction
graph to verify a newly received transaction, nodes learn
about other transactions issued by other nodes.

Blockchain Sharding.
Given the lack of scalability premises of existing blockchains,

a number of recent works have proposed to shard the block-
chain in order to increase the attained scalability and through-
put of the system.

Elastico [11] is a permission-less blockchain that relies on
network sharding. Similar to BitcoinNG [7], Elastico defines
epochs within which validator nodes establish their identi-
ties in the network based on some puzzle such as Proof of
Work (PoW) [5, 12]. Based on the established identities,
nodes are organized into committees that process only a
subset of transactions in the network. Committees then ex-
ecute permission-based Byzantine consensus protocols such
as PBFT [6] to confirm transactions. Finally, all blocks gen-
erated in one epoch are merged by a final committee and
broadcasted into the network to update the chain.

However, such sharding protocols split the load of only
transaction processing. All validator nodes still have to
maintain the complete blockchain history (e.g., Bitcoin’s
blockchain amounts to about 120 GB at the time of writ-
ing). In fact, all nodes in the system still need to receive all
confirmed transactions/blocks.

3. OUR APPROACH
In this section, we present and detail our proposed ar-

chitecture. To this end, we start by introducing our sys-
tem model, after which we introduce the concept of satellite
chains, and discuss how to enable asset transfer among satel-
lite chains.

System Model.
We consider a permission-based blockchain network com-

prising of registered stakeholders. The platform supports
smart contracts in the form of distributed applications such
as those found in Ethereum [14] and Fabric [2].

Our system consists of a number of nodes that can take
any of the following roles: clients that just send transactions
in the system, validators that participate in the consensus,
auditors that can passively see a selected number of transac-
tions in the system, and regulators that can enforce policies
(e.g., ban nodes) without necessarily participating in the
consensus. Notice that nodes can take more than one role
in the system.

We assume that nodes are interested in joining different
committees, so called satellite chains, in the network. Satel-
lite chains consist of an arbitrary number of stakeholders
that share a given business logic or commonly interact with
each other to fulfill a desired goal. Conforming with ex-
isting industry standards, we assume that stakeholders are
not interested in sharing their transactions with parties with
whom they did not establish any relationship.

Satellite Chains.

satellite
chain 1 satellite

chain 2

satellite
chain 3

regulator
auditor

policies
events

asset transfer

Figure 1: Our approach featuring multiple intercon-
nected satellite chains. Validator nodes maintain the
private ledger within the satellite chains while the
assets can be transferred across chains. The reg-
ulators push policies into chains and the auditors
subscribe to events generated by chains.

We define a satellite chain to be a distributed private
ledger maintained by a subset of stakeholders in the net-
work. These stakeholders also act as validators in their satel-
lite chain, participate in the consensus, and maintain the
ledger state (cf. Figure 1). Unlike Sidechains [4], our model
makes no restriction on the underlying consensus layer used
in each satellite chain. As we will show later, each satellite
chain can decide to adopt any consensus protocol, such as
PBFT [6], MinBFT [13], FastBFT [10], that does not violate
the policies mandated by the regulator. However, similar to
Sidechains, our solutions supports asset transfer among dif-
ferent satellite chains. Access control to the private ledger is
maintained by each satellite chain, and is defined by a policy
determined by the validators of the chain and the regulator.
Notice that, in our solution, a single node is not bound to a
single satellite chain and could join different chains simulta-
neously.

To form a satellite chain, a group of nodes first agrees on
the validators of the chain, the consensus protocol, and the
access policies. This agreement can be reached offline (i.e.,
using an external channel) or could be realized within the
blockchain system itself. Algorithm 1 sketches a routine for
forming satellite chains. This construct defines an algorithm
to elect an initiator, a chain ID, and the underlying consen-
sus protocol. All nodes involved in the chain broadcast their
ID and their preferences for the consensus protocol. The
sole role of the chain initiator is to facilitate the agreement
process by aggregating the nodes’ preferences and making a
matching proposal. The initiator broadcasts the proposal to
the chain nodes in order to collect their approval. Once an
agreement among the nodes is reached, the satellite chain
can be successfully instantiated with the agreed consensus
protocol.

Notice that auditors can subscribe to any given satellite
chain in order to receive notifications about selected trans-
actions in that chain. This subscription request needs to be
authorized by the chain.

Regulators.

Algorithm 1 Satellite chain formation

Definitions:
IDi: registered ID of node i in the blockchain
CListi: proposed consensus protocol list from node i

procedure propose chain
send IDi, CListi to all nodes
wait and collect 〈{IDk}, {CListk}〉 from all nodes
check {IDk} are all registered and retrieve their cer-

tificates
chainid ← getName({IDk})
consensus← select({CListk})
chain info← 〈chainid, {IDk}, consensus〉
if isInitiator(i, {IDk}) then

coordinate(chain info)
else

acknowledge(chain info)
end if

end procedure

function coordinate(chain info)
sigi ← sign(chain info)
send 〈chain info, sigi〉 to all nodes
wait and collect {sigk} from all nodes
if valid(sigk) for all nodes k then

aggregate and send {sigk} to all nodes
return 〈chain info, {sigk}〉

end if
end function

function acknowledge(chain info)
wait for 〈chain info′, sigj〉 from initiator j
if isInitiator(j, {IDk}) & valid(sigj , chain info′)

then
if chain info = chain info′ then

sigi ← sign(chain info)
send sigi to initiator j
wait for {sigk} from initiator j
if valid(sigk) for all nodes k then

return 〈chain info, {sigk}〉
end if

end if
end if

end function

Regulators are entities which ensure that all transactions
in the network are validated and comply with some high
level policy. Unlike previous proposals, regulators do not
participate in the consensus protocol, and have the sole role
of pushing the regulation policies to the selected satellite
chains.

This is achieved by deploying the regulation policies us-
ing smart contracts. To apply these policy contracts with
full flexibility, we also introduce a policy directory contract
which is designed to manage all the policy contracts by pro-
viding functionalities such as registration, search by trans-
action type, etc. The directory contract is mandated by the
regulators, and is deployed in each satellite chain. The pol-
icy directory contract listens to all publish/update events
about policy contracts released by the regulator—thus en-
suring that new policy contracts will be automatically de-
ployed in their respective satellite chains and registered in
the directory contract.

Moreover, we require all smart contracts deployed in each
satellite chain to contain a hook to this policy directory con-
tract. Namely, during transactions validation, transactions
will be forwarded to the policy directory contract, which will
apply appropriate policy checks before allowing the satellite
chain’s smart contracts to execute them. This proposal en-

Algorithm 2 Cross-chain Asset Transfer

Definitions:
s, r: sender and recipient nodes
sa, ra: sender’s and recipient’s accounts
m: amount of transferred asset
ti: threshold of the replies from i’s chain for finality

proof according to their consensus protocols
chain infoi: chain consensus configuration
transferf , replyf , rejectf , receiptf : transactions with fi-

nality proof

procedure transfer(ra,m)
issue transfer(sa, ra,m) in s’s chain
wait for {sigtr} from ts nodes
transferf ← 〈transfer, {sigtr}〉
send transferf to r and wait for replyf from r
handleReply(replyf)

end procedure

procedure handleReply(replyf)
if accept(chain infor, replyf) then

if reply = receipt then
store receipt

else if reply = reject then
issue rejectf in s’s chain

end if
end if

end procedure
upon committing transfer in s’s chain

if checkPolicy(transfer) then
sa ← sa −m
sigtr ← sign(transfer)
send sigtr to node s

end if
upon receiving transferf at r

issue transferf in r’s chain
wait for {reply, sigrep} from tr nodes
replyf ← 〈reply, {sigrep}〉
send replyf to s

upon committing transferf in r’s chain
reply← 〈“reject”, transfer〉
if accept(chain infos, transferf) then

if checkPolicy(transfer) then
ra ← ra + m
reply← 〈“receipt”, transfer〉

end if
end if
sigrep ← sign(reply)
send 〈reply, sigrep〉 to r

upon committing rejectf in s’s chain
if accept(chain infor, rejectf) then

sa ← sa + m
end if

sures that, as long as there are enough honest validators in
each satellite chain, the regulation policies are enforced cor-
rectly in each chain without the need for active intervention
from the regulators.

Cross-chain Asset Transfer.
As mentioned earlier, each satellite chain processes trans-

actions therein and maintains the ledger independently among
the member stakeholders. However, in some use cases, as-
sets need to flow between stakeholders across multiple satel-
lite chains. This would be beneficial, for example, in cross-
border payments between financial institutions that belong
to different administrative domains (i.e., different satellite
chains).

To address this problem, our proposal supports transfer-
ring assets between independent satellite chains. As shown
in Algorithm 2, asset transfers involve moving a particular
asset m (e.g., a payment or an investment) from a sender s
to a recipient r, such that s and r belong to two different
satellite chains. Figure 2 shows the work flow of the asset
transferring process.

To initiate the transaction, s first issues a transfer request
to its satellite chain. All validators in s’s chain verify the
transaction, e.g., check if m does not exceed some upper
bound limit and s’s account holds m assets. If the policy
check (checkPolicy() in Algorithm 2) passes, the validators
execute the transaction by removing m assets from s’s ac-
count, and return to s an authenticated response approving
the transfer transaction. Once s collects enough authenti-
cated responses from the validators, s combines them into a
finality proof that represents the aggregated approval from
all validators of s’s chain, and proves that the transaction
is indeed finalized and executed in that chain. The number
of required approvals depends on the underlying consensus
protocol. For instance, if the consensus protocol of s’s chain
is PBFT, then, given the full list of n validator certificates,
the finality proof should include at least b(n− 1)/3c+ 1 sig-
natures. Notice that the asset transfer token (i.e., transfer)
also specifies the recipient chain where the asset should be
spent. As a result, the token will not be accepted in any
other chain.

s then sends this finality proof to r’s chain, which verifies
it given the chain information it contains, such as the list of
validator certificates, and the underlying consensus protocol
(accept() in Algorithm 2). If the finality proof is accepted,
the validators of r’s chain further verify if the transfer trans-
action from s to r is allowed by the policies. If all checks are
passed, r’s validators move m assets to r’s account and to-
gether they return to s a receipt token with the finality proof
of r’s chain. Otherwise, the chain sends back a reject token
that can be used by s to restore its account in s’s chain.
The messages transmitted between the sender and recipient
chain are carried out using a direct channel between s and
r. If s receives neither a receipt nor a reject token within
some timeout, he can resend the transfer request to another
node in r’s chain.

Given the above described procedure, we argue that the
assert transfer operation is atomic at all times: the sender’s
and recipient’s accounts are either both updated in their
respective satellite chains or both unchanged. We do not
allow implicit roll-backs based on timeout since the process
is asynchronous. Only explicit roll-backs with reject token
from the recipient chain are allowed. More specifically, the
sender s expects either a receipt token or a reject token from
r’s chain to conclude the asset transfer. Since the consensus
layer of the satellite chains guarantees availability and con-
sistency, we argue that s will eventually get a response from
r’s chain. If the transfer operation is successful, only one
consensus round is required within each chain; if the opera-
tion fails in the recipient chain, the sender chain is required
to execute an additional round of consensus to roll back the
sender’s account.

4. INTEGRATION WITH HYPERLEDGER
In this section, we discuss various insights with respect

to the integration of our proposed architecture with Hyper-
ledger Fabric v0.6 (see Section 2). Namely, Hyperledger

s r

6

sender's
satellite chain

recipient's
satellite chain

3

1

2

3

7

5

4

6

Figure 2: Atomic asset transfer between the sender
node (s) and recipient node (r) across two satel-
lite chains: 1© s issues transfer transaction; 2© nodes
verify and execute transfer; 3© s aggregates authen-
ticated approvals on transfer and forwards to r; 4©
r issues transferf transaction; 5© nodes verify and
execute transferf ; 6© r aggregates authenticated ap-
provals on either receipt or reject and sends back; 7©
s issues rejectf to restore account in case the trans-
action fails in the recipient’s chain.

Fabric does not support multiple chains/ledgers, nor does
it provide functionality for cross-chain asset transfer. We
therefore discuss various required adaptations of Fabric in
order to implement our proposal. We additionally comment
on the integration with the upcoming release of Hyperledger
v1.0.

Instantiating Regulators.
We extended Fabric’s Membership Services to comply with

our solution. Namely, we assume that the regulator orches-
trates the membership services for the entire blockchain net-
work. Moreover, the regulator stores a data structure listing
all the satellite chains registered to it, together with infor-
mation about members of each chain (i.e., IP address, TCP
port, node ID). Each satellite chain must register itself to
the regulator services upon formation.

Additionally, in our system, regulators enforce policies by
means of chaincodes; that is, for each policy the regulator
provides one (or more) chaincode(s). Each satellite chain
must deploy the policy chaincodes together with their own
chaincodes.

Independent Ledgers.
To instantiate independent ledgers, nodes need to main-

tain multiple separate ledgers, one for each satellite chain
they joined. In our implementation, we adapted Fabric
nodes’ core code to create a new database to store the ledger
whenever a node joins a new satellite chain. For this pur-
pose, we leverage Fabric’s RocksDB key-value storage to
store each ledger on disk. The node then includes a pointer
to the newly created database in a data structure dubbed
chain-to-ledgers. The chain-to-ledgers data structure is a
map that stores (key, value) pairs of (chain id, ledger db)
listing all the satellite chains the node has joined and a
pointer to the database storing their ledger, that is, the
transactions exchanged within that satellite chain. This
data structure is accessed whenever a newly validated trans-

actions needs to be added to the satellite chain ledger’s
database.

Additionally, we added new components to the node’s
core code: a chain-to-consensus data structure, a chain-to-
ledgers data structure and a chain-to-peers data structure.
The chain-to-consensus data structure is a map that stores
(key, value) pairs of (chain id, consensus plugin) listing all
the satellite chains the node has joined and their correspond-
ing consensus protocol. Recall that the satellite chain ID
and consensus protocol are agreed with an off-chain proto-
col by its members. Whenever a node joins a new satellite
chain, it passes this data to the fabric’s peer so that it is
stored in the chain-to-consensus map. The chain-to-peers
data structure is a map that stores (key, value) pairs of
(chain id, peers list) listing all the satellite chains the node
has joined and a list of peers participating in that satellite
chain. The list of participants of a satellite chain is ob-
tained as a result of the same off-chain protocol that the
nodes use to agree the satellite chain ID and consensus pro-
tocol. Therefore, the participant’s list is also passed to the
fabric’s peer whenever a node joins a new chain.

Whenever a satellite chain successfully validates a trans-
action, each node adds it to the chain’s ledger by accessing
the chain-to-ledgers map with the chain id to retrieve the
pointer to the ledger’s database. The transaction is then
added to the ledger by querying the database.

Asset Transfers.
To incorporate the cross-chain assets transfer functional-

ity within Fabric, we allow nodes to establish direct connec-
tions to send assets transfer messages over TLS.

Additionally, transactions now include their target satel-
lite chain ID—the chain id—in their payload. The receiving
node broadcasts the transaction to only the nodes partici-
pating in the satellite chain specified in the transaction’s
payload. The node knows to which nodes it must send the
transaction by retrieving the peers list from the chain-to-
peers map introduced above. The receiving node than is-
sues an invoke transaction to the desired chaincode using
chain id and chaincode id as identifiers.

Enforcing Policies.
Recall that each satellite chain must deploy the policy

chaincodes together with their own chaincodes.
The regulator provides a policy directory chaincode that

manages the policy chaincodes to validate transactions, and
collects their validations’ results. This special chaincode is
deployed in each satellite chain, and listens for update events
about policy chaincodes from the regulator (cf. Figure 3).
This is achieved by leveraging Fabric’s event framework to
push chaincode updates. Upon the receipt of an update
event, the policy directory chaincode downloads the new—or
the updated—policy chaincode and deploys it to the satellite
chain so that it can be used to validate transactions.

Whenever a chaincode executes a transaction, it passes
the transaction to the policy directory chaincode. The lat-
ter then looks up the list of deployed policy chaincodes,
and forwards the transaction further. Subsequently, pol-
icy chaincodes determine if the transaction violates any of
their defined policies, and return the result of the validation
to the policy directory chaincode. The validation is unsuc-
cessful if at least one fails. The validation is successful if all

Validator
Node

PDCC

CC1

CC2

PCC1

PCCn

Figure 3: Deployed policy chaincodes
(PCC1 . . . PCCn) are registered by the policy
directory chaincode (PDCC), which is a default
system chaincode deployed in each satellite chain in
the network. Each application chaincode (CCi) ver-
ifies the received transactions against all regulation
policies registered by the PDCC.

policy validations complete successfully. In that case, the
chaincode then continues processing the transaction.

Integration with Hyperledger Fabric v1.0.
Hyperledger Fabric v1.0 plans to introduce a clear separa-

tion between node roles: clients, submitters, endorsers, and
consenters. Clients connect to a submitter, issue a trans-
action, and wait for the result of execution. Submitters
act as proxies for clients, and connect to endorsers in or-
der to execute the transaction on behalf of the client. En-
dorsers process the transaction by invoking smart contracts
(i.e., chaincodes) executing it, and endorsing it. Notice that
chaincodes may specify an endorsement policy which defines
a set of requirements for a valid transaction endorsement.
Finally, if the endorsement is successful, the transaction will
be forwarded to the consenters who will run consensus to
include it in the global ledger. Clearly, this architecture
allows to parallelize endorsements execution amongst var-
ious endorsers. However, although Hyperledger Fabric al-
lows multiple private ledgers and consensus established over
multiple channels, it does not support asset transfers among
these ledgers. Moreover, there is no support for a hands-off
regulator to enforce policies on multiple channels: the regu-
lator has to be involved as an active endorser to vote on all
the transactions.

We argue that our proposed architecture can further im-
prove the provisions of Fabric v1.0 to better fit the industrial
use cases. Namely, satellite chains can be implemented using
multiple consensus channels in the framework; we can also
achieve asset transfer among different chains in a similar
way as in v0.6. Moreover, the regulator policy enforcement
scheme can also be easily integrated with the system chain-
code in Fabric v1.0. We therefore foresee no major obstacles
in integrating our proposal within the planned Hyperledger
Fabric v1.0.

5. OUTLOOK
In this paper, we proposed a new blockchain architecture

devised specifically to meet industrial standards. Our pro-
posal leverages the notion of satellite chains that form inter-
connected but independent subchains of a single blockchain
system, and supports an unbounded number of active chains

that can run in parallel at any point in time. Moreover, our
proposal allows different satellite chains to transfer assets
among themselves without compromising the security and
soundness guarantees in the system, and accounts for the
role of a passive regulator that can at any point in time
enforce specific network-wide policies.

Our proposal is agnostic of the underlying consensus pro-
tocol utilized in the network, and as such can be easily inte-
grated within existing blockchain platforms such as Hyper-
ledger Fabric and Corda. Moreover, our proposal supports
heterogenous consensus protocols by allowing different satel-
lite chains to execute different consensus protocol as long as
such consensus is in line with the policies set by the regula-
tor. As a proof of concept, we discussed various insights on
its integration within Hyperledger Fabric v0.6.

Notice that by effectively organizing nodes within inter-
connected satellite chains, our proposal practically enables
the realization of blockchain sharding based on functional re-
quirements such as node relationships. Blockchain sharding
has received considerable attention in the literature; while
there are a number of security challenges that effectively
hinder practical sharding (for load balancing), our solution
groups relevant stakeholders in a single shard. We believe
that our solution finds direct applicability in a number of
emerging industrial blockchain applications, such as trade
finance, asset management, supply chain management, and
retail services. We therefore hope that our findings motivate
further research in this area.

6. REFERENCES
[1] Hyperledger – Blockchain Technologies for Business.

https://www.hyperledger.org/.

[2] Hyperledger Fabric. https:
//hyperledger-fabric.readthedocs.io/en/v0.6/.

[3] Ripple. https://ripple.com/.

[4] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, A. Poelstra, J. Timón, and
P. Wuille. Enabling Blockchain Innovations with
Pegged Sidechains. 2014.

[5] A. Back et al. Hashcash-a denial of service
counter-measure, 2002.

[6] M. Castro, B. Liskov, et al. Practical Byzantine Fault
Tolerance. In OSDI, volume 99, pages 173–186, 1999.

[7] I. Eyal, A. E. Gencer, E. G. Sirer, and
R. Van Renesse. Bitcoin-NG: A Scalable Blockchain
Protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
45–59. USENIX Association, 2016.

[8] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,
H. Ritzdorf, and S. Capkun. On the security and
performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 3–16.
ACM, 2016.

[9] M. Hearn. Corda – A distributed ledger. Corda
Technical White Paper, 2016.

[10] J. Liu, W. Li, G. O. Karame, and N. Asokan. Scalable
Byzantine Consensus via Hardware-assisted Secret
Sharing. arXiv preprint arXiv:1612.04997, 2016.

[11] L. Luu, V. Narayanan, C. Zheng, K. Baweja,
S. Gilbert, and P. Saxena. A Secure Sharding Protocol
For Open Blockchains. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and
Communications Security, pages 17–30. ACM, 2016.

[12] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System, 2008.

[13] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Verissimo. Efficient Byzantine Fault-Tolerance.
IEEE Transactions on Computers, 62(1):16–30, 2013.

[14] G. Wood. Ethereum: A Secure Decentralised
Generalised Transaction Ledger. Ethereum Project
Yellow Paper, 2014.

